Factsheet: Defining Agronomic Practices for Forage Corn Production in Saskatchewan

Objectives:

The objectives of this study were to develop and refine seeding and fertility recommendations for corn silage production and to evaluate the cost of production and feed quality of corn silage grown in Western Canada.

Methodology:

The project was conducted at 6 sites (Scott, Lanigan, Melfort, Yorkton, Outlook, and Redvers) over 3 growing seasons (2016, 2017, and 2018). At each site, two corn brands were planted (Brand A and Brand B) based on the Corn Heat Units (CHU) of each location. To evaluate the effect of seeding rate and nitrogen rate on production of forage corn, the project included three seeding rates (30,350 plants/ac, 40,470 plants/ac, and 50,600 plants/ac) and three nitrogen rates (100, 150, and 200 lbs N/acre).

Table 1: Summary of corn heat unity (CHU) rating of each site, soil zone, and hybrid selected for year 3 of the study.

Site	Site CHU Rating	CHU Rating (2017/2018/2019)		Soil Zone
		Brand A	Brand B	
Scott	2,100	2,200/2,075/2,075	2,050/2,050/2,050	Dark Brown
Lanigan	2,150	2,200/2,075/2,075	2,050/2,050/2,050	Think Black
Melfort	2,175	2,200/2,200/2,200	2,225/2,150/2,150	Black
Yorkton	2,250	2,325/2,200/2,200	2,225/2,150/2,150	Black
Outlook	2,300	3,325/2,350/2,350	2,300/2,300/2,300	Dark Brown
Redvers	2,450	3,325/2,350/2,350	2,300/2,300/2,300	Black

Table 2: Summary of seeding rates and nitrogen application rates used in each trial year of the study.

	Seeding Rate		Nitrogen Application Rates	
	(plants/ha)	(plants/acre)	(kg N/ha)	(lb N/acre)
Low	75,000	30,350	112	100
Medium	100,000	40,470	168	150
High	125,000	50,600	225	200

The full report is available on www.warc.ca. This project was funded by the Saskatchewan Ministry of Agriculture through the Agriculture Development Fund (ADF), the Saskatchewan Cattleman's Association, and the Prairie Agricultural Machinery Institute.

WARC Project #: 8-16 ADF Project #: 20150276

Key Findings:

- Site CHU ratings are based on grain corn production; silage corn production generally requires 200 CHU values less than grain corn (Table 3).
- Significant 'site-year x brand' interactions for forage yield and quality indicates that regional trial results will be useful for producer hybrid selection.
- Nitrogen fertilizer rate had a small and variable effect on forage yield and a significant effect on forage quality.
- Increasing the seeding rate reduced crude protein (CP) and soluble protein, but increased dry matter (DM) forage yield.
- Increasing the N fertilizer application resulted in greater DM forage yield at 200 lbs N/ac, but the increase was only 0.6 Mg/ha.
- Increasing the N fertilizer application also increased CP and soluble protein concentration but only by 0.99% and 0.36% respectively. While increasing CP concentration was observed with N fertilization, it may be more economical to provide CP supplementation in a concentrate or pelleted form.
- Total Digestible Nutrients (TDN) was not affected by N rate or seeding rates; mineral concentrations for all treatments were suitable for beef-cow wintering diets.
- The cost of production per tonne of biomass yield increased with seeding rate; increasing the nitrogen rate was only economically viable at the long-season sites.
- Since there are significant site-year effects for forage quality, producers should always test the nutritional quality of the corn forage to confirm whether supplemental minerals are required based on nutritional requirements of their cattle.

The full report is available on www.warc.ca. This project was funded by the Saskatchewan Ministry of Agriculture through the Agriculture Development Fund (ADF), the Saskatchewan Cattleman's Association, and the Prairie Agricultural Machinery Institute.

WARC Project #: 8-16 ADF Project #: 20150276

Tables:

Table 3: CHU calculated for all 18-site year locations using the nearest available EC weather stations

Trial Site	Weather Station Site	CHU Rating	2016 CHU	2017 CHU	2018 CHU
Redvers	Oxbow	2450	2209*	2149*	2332
Yorkton	Yorkton	2250	2372	2291	2287
Outlook	Outlook	2300	2271	2091*	2288
Melfort	Melfort	2175	2263	2181	1876*
Scott	Scott	2100	2002	1983	1976
Lanigan	Watrous	2150	2104	2025	1826*

^{*}did not experience sufficient CHU for silage production

(Source: http://climate.weather.gc.ca/historical data/search historic data e.html)

Table 4: Average DM yield, tonne/ha (ton/acre) for each treatment group

	Treatment	2016	2017	2018
	Outlook	16.0 (8.5) a	18.2 (8.1) a	18.8 (8.4) a
	Redvers	18.3 (8.2) ab	15.1 (6.7) b	15.7 (7.0) b
Site	Yorkton	17.4 (7.8) b	14.4 (6.4) bc	11.6 (5.2) c
	Lanigan	19.1 (7.1) c	13.8 (6.2) cd	12.5 (5.6) c
	Scott	12.3 (5.5) d	12.7 (5.7) d	10.8 (4.8) c
	Melfort	10.9 (4.9) e	-	-
Brand	Brand A	16.0 (7.1) a	14.8 (6.6) a	13.6 (6.1) a
	Brand B	15.4 (6.9) b	14.9 (6.6) a	14.7 (6.6) b
	High rate	16.1 (7.2) a	14.8 (6.6) a	14.8 (6.6) a
N Rate	Mid rate	15.7 (7.0) ab	15.2 (6.8) a	14.2 (6.3) ab
	Low rate	15.2 (6.8) b	14.5 (6.5) a	13.3 (5.9) a
	High rate	16.4 (7.3) a	15.3 (6.8) a	14.3 (6.4) a
Seeding Rate	Mid rate	15.4 (6.9) b	14.9 (6.6) ab	14.1 (6.3) a
	Low rate	15.2 (6.8) b	14.3 (6.4) b	14.0 (6.2) a

The full report is available on www.warc.ca. This project was funded by the Saskatchewan Ministry of Agriculture through the Agriculture Development Fund (ADF), the Saskatchewan Cattleman's Association, and the Prairie Agricultural Machinery Institute.

WARC Project #: 8-16 ADF Project #: 20150276

