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ABSTRACT             

Fusarium head blight (FHB) has become a substantial management concern for wheat growers in 

Saskatchewan, affecting both yield and quality of the crop. An integrated approach to Fusarium Head 

Blight (FHB) management is recommended, including the use of resistant varieties, a timely fungicide 

application, and crop rotation. FHB forecasting tools have been developed to predict the risk of disease 

development based on environmental conditions. In commercial production, the effectiveness of FHB 

risk management practices undoubtedly varies with environmental conditions. Improved disease 

management can potentially be attained with a better understanding of the interactive effects of 

management and environment on FHB development in wheat. An observational study was conducted on 

commercial farms, in collaboration with local producers near Indian Head, Melfort, and Scott, 

Saskatchewan, from 2018-2020. Environmental and agronomic data were collected from several sample 

sites in several fields throughout the growing season, and management data was provided by producers. 

Individual effects of management and environmental variables on FHB symptoms in the field (FHB 

index), Fusarium damaged kernels (FDK), and deoxynivalenol (DON) level were examined. Then, a 

multivariate analysis using a multiple regression and competing models approach was conducted to 

assess the interactive effects of management and environmental variables on FDK. Results showed that 

the choice of variety and fungicide product were highly influential on FHB development, but that the 

timeliness of fungicide application was less important. Environmental variables affecting the 

development of FDK in the crop during pre-anthesis stages were mainly related to temperature, while 

influential variables during post-anthesis stages were related to moisture. More importantly, results 

showed that environmental variables were mainly interactive with management practices, and the 

effects were not additive. As FHB risk management practices are commonly applied in commercial wheat 

fields, these findings confirm that in order to advance our ability to forecast the risk of FHB infection 

using predictive models, it will be necessary to more thoroughly evaluate the interactive effects of 

management and environment. Based on the results of this study, it would be most insightful to 

compare genetic FHB resistance or effectiveness of different fungicide strategies (products and timing) 

as a function of various environmental conditions. The study was also useful in demonstrating the 

potential of on-farm observational studies in agronomic research.    

 

 

 

  



INTRODUCTION            

Fusarium head blight (FHB) has become a substantial management concern for wheat growers in 

Saskatchewan due to changing weather patterns, more intensive farming practices, and the movement 

of infected seed. FHB infection results in a reduction in yield, but of primary concern is the reduction in 

grain quality due to the presence of Fusarium damaged kernels (FDK) and mycotoxins such as 

deoxynivalenol (DON), and the resulting reduction in marketing opportunities (Fernando et al. 2021, 

Gilbert & Tekauz 2000).  

Agronomic research to date has contributed significantly to our understanding of the role of important 

management variables in the development of Fusarium head blight and production of mycotoxins. An 

integrated approach is recommended for FHB management in wheat as disease development is a 

function of many independently triggered mechanisms, thus no single management practice is 

individually effective in controlling the disease (Fernando et al. 2021, McMullen et al. 2008). The most 

important management practices in managing FHB have been: 1) the selection of resistant wheat classes 

and varieties, 2) a diverse crop rotation, and 3) a timely fungicide application in conjunction with FHB 

forecasting tools (Fernando et al. 2021, Ye et al. 2017, Gilbert & Haber 2013).  

It is important that producers incorporate these management practices to reduce FHB infection and 

disease incidence and severity in their crops; however, FHB development is also highly dependent on 

environmental conditions (Fernando et al. 2021, Kriss et al. 2010, Gilbert & Fernando 2004). Additional 

cultural practices can be used as part of an integrated disease management approach and may minimize 

the influence of environmental factors (Gilbert & Tekauz 2011, Gilbert & Tekauz 2000). These would 

include practices that: 1) favour uniform crop development that will lessen the period of susceptibility to 

infection and aid in making fungicide application more effective, 2) create a canopy configuration and 

density that is conducive to air movement, and 3) result in vigorous seedlings, such as using seed with 

low level of infection and using seed treatment.   

Still, the effectiveness of management practices applied in commercial fields is not guaranteed or 

consistent across regions, soil zones, or even farms, where environmental conditions are highly variable. 

Management recommendations are based on agronomic experiments which are fundamentally designed 

to isolate the effect of specific treatments through controlled manipulations that factor out the 

variability resulting from environmental conditions. The interacting effects of environmental variables 

are rarely explicitly measured or quantified. Yet, in commercial production, the effectiveness of 

mitigative management practices undoubtedly varies with ambient conditions affecting disease 

development in the crop. Therefore, better disease management can potentially be attained with a 

better understanding of how environmental conditions impact the effectiveness of management 

decisions, and how management decisions can in turn affect the microclimate within the crop at 

important developmental stages.  

In order to advance our understanding of FHB management in wheat production, it will be insightful to 

examine these inter-correlated factors simultaneously rather than independently, utilizing a multivariate 

perspective. Thus, the objective of this study is to examine the additive and interactive effects of 

multiple management and environmental variables on FHB development in wheat under commercial 

production. This study will fill the gap between agronomic research results and on-farm observations by 

simultaneously examining the many interacting factors affecting FHB development in wheat, and by 

explicitly measuring and incorporating environmental data in a multivariate analysis. Fortunately, factors 



that are influential on FHB development in wheat have been identified through past agronomic research 

as well as growers’ and agronomists’ knowledge and experience, and so effort can be focused on these 

particular variables. 

This study utilizes an innovative observational design with data collected directly from producers’ fields. 

By adopting a systems approach to agronomic research, we will attempt to provide a novel perspective 

of how we can build on the extensive knowledge of individual relationships and advance our 

understanding of the intercorrelation of relationships within the agricultural system.  

 

METHODOLOGY            

Study design 

The study design consisted of an observational approach with a multivariate and hierarchical data 

structure. The study was conducted on commercial farms, in collaboration with local producers in three 

locations, Indian Head, Melfort, and Scott, Saskatchewan, for three growing seasons, from 2018-2020.  

Producers were contacted ahead of seeding in the spring to identify fields which would be planted to 

wheat. There were no treatments or experimental manipulation; producers managed their fields as 

usual. The fields chosen for the study were approximately 160 acres in area but could be part of larger 

management units. The geographical coordinates of 3 or 4 representative sample sites in each field was 

marked for repeated sampling. The sample sites were located along roads for quick access but at 

sufficient distance to avoid headlands, and were isolated from each other as much as possible within a 

field. The replicates were arranged hierarchically, in that sample sites were nested within fields, fields 

were nested within operations, and the same operations could potentially be included over the 3 years 

of the study. As each operation had multiple fields of wheat that were seeded successively in the spring, 

this provided a range of different environmental conditions for each replicate throughout the growth 

stages of the crop. The number of replicates at each level over the 3 years of the study is summarized in 

Table 1. Over the 3-year duration of the study, data was collected at 314 sample sites, in 91 fields from 

12 different operations in the three locations.  

Table 1. Replication at the sample site, field, and operation level in each growing season over the duration of the 
study.  

Year Location Producers Fields Sample Sites 

2018 

Indian Head 4 14 52 
Melfort 3 9 27 
Scott 3 9 35 

Total 10 32 114 

2019 

Indian Head 4 12 41 
Melfort 3 9 30 
Scott 3 9 34 

Total 10 30 105 

2020 

Indian Head 3 12 39 
Melfort 3 9 32 
Scott 3 8 24 

Total 9 29 95 

 Total 12* 91 314 

*7 producers x 3 years, 3 producers x 2 years, and 2 producers x 1 year each 



Data collection 

The geographical location of each sample site was marked so all samples and measurements were taken 

within an approximately 5-m radius area. The following data were collected at each sample site:  

i. Spring soil quality: Soil samples were collected prior to seeding and/or spring fertilizer 

application, and analyzed for macronutrients (N, P, K, S), micronutrients, organic matter, pH, 

and cation exchange capacity (CEC). Soil samples from 2020 had not yet been analyzed at the 

time of data analysis.  

ii. Surface residue, before and after seeding: Digital photographs were taken and percent 

ground cover was assessed digitally using SamplePoint image analysis software (Booth et al. 

2006). 

iii. Weekly monitoring data: The following measurements were taken at each sample site 

approximately weekly from the seeding date until crop maturity. 

a. Soil moisture and temperature: several point measurements of soil temperature and of 

soil volumetric water content were taken using a WaterScout SM 100 sensor attached to 

a hand-held reader. Measurements were taken before 10:00 am for the large majority of 

samples, and the time was recorded to be able to control for the effect of sample time 

on soil temperature. 

b. Precipitation: rain gauges were placed within a 1-mile radius of each sample site. 

Precipitation was recorded and the gauges were emptied at the time of weekly 

sampling.   

c. Zadoks growth stage: Starting at approximately 3 weeks after the seeding date, the 

average growth stage of the crop in the area near the sample site was recorded, as well 

as the minimum and maximum growth stages observed in the area. Average growth 

stage was determined using the three values. Standard deviation of the 3 values was 

calculated to estimate the variability in growth stage (“staginess”) of the crop.    

iv. Plant density: The number of seedlings in two 1-m sections of crop row was counted at 

approximately 3 weeks after the seeding date. Plant density per area was determined using 

producer-reported row spacing.  

v. Tiller density: The number of heads in four 0.5-m sections of crop row was counted at the 

late milk to early dough stage (same time as FHB ratings). Tiller density per area was 

determined using producer-reported row spacing. 

vi. Fusarium Head Blight (FHB) ratings: A visual assessment of FHB symptoms was done at the 

late milk to early dough stage1.  

a. In 2018, a total of 50 heads (10 heads in 5 different crop rows) were inspected to 

determine percent incidence of FHB (the proportion of heads showing symptoms of 

disease), and average severity of infection (the average percent area of heads affected 

by disease symptoms, of infected plants only). Percent incidence and average percent 

severity was used to determine the FHB index (percent incidence multiplied by percent 

severity).      

 
1 After the first year of data collection, it was determined that the number of wheat heads being examined in the 
field was insufficient and did not provide a representative or adequate sample size, leading to disproportionate 
estimates of the incidence of FHB symptoms. Thus, in the second year of the study, the method utilized for visually 
assessing FHB symptoms in the field was modified. 



b. In 2019 and 2020, the number of heads showing symptoms of FHB was counted in ten-

0.5 m sections of crop row, and the average percent area of the heads affected by the 

disease was recorded (infected heads only). Tiller density was used to determine the 

percent incidence. Percent incidence and average percent severity was used to 

determine the FHB index. 

vii. Grain yield: All wheat heads from four representative 0.5 m sections of crop row were 

manually harvested, dried, threshed, and weighed. Grain yield in kilograms per hectare was 

calculated using producer-reported row spacing. This was an optional measurement and was 

only completed in Indian Head in all three growing seasons.  

Producers were asked to provide a harvested grain sample from each field to be submitted for 

laboratory analysis of Fusarium damaged kernels (FDK) and percent deoxynivalenol (DON). The following 

management data was also requested from producers for each field: 

i. Seed quality information (percent Fusarium spp., percent Fusarium graminareum, thousand 

kernel weight (TKW), percent germination) – if this information was not available, producers 

were asked to provide a sample of the seed to send in for quality analysis; 

ii. Crop rotation (crop type and variety (if wheat) in the previous 3 years);  

iii. Seeding date, seeding rate, variety (cultivar), and seed treatment; 

iv. Applied fertilizer rate, form, placement and timing; 

v. Row spacing, seeding speed, seeding implement type;  

vi. Fungicide application date, product, rate, and nozzle type and size, water volume, and 

sprayer speed or pressure; 

vii. Fungicide rotation (fungicide products used in previous 3 years); 

viii. Other crop protection product application dates, rates, and products;  

ix. Swathing, desiccation, or crop termination date, harvest date and yield. 

Management data was not always reported completely or in detail, resulting in missing values or 

incomplete data for certain variables. In addition, some variables of interest did not have enough 

replication of certain groups or levels to be included in the analysis. In particular, the wheat class, and 

the rate of applied micronutrients such as copper did not have replication within groups to be included 

in the analysis.  

Soil characteristics were obtained for each sample site using the Saskatchewan Soil Information System 

(SKSIS Working Group 2018).  

Regional weather data was retrieved from Environment and Climate Change Canada [ECCC]’s online 

database (ECCC 2020), using the nearest weather stations with complete data over the three growing 

seasons (Indian Head, Melfort, and Scott). Daily mean temperature and daily precipitation were 

compiled, and daily growing degree days (GDD) was calculated from the daily mean air temperature, 

using 5°C as the base temperature. Hourly relative humidity and wind speed were averaged to obtain 

daily values.  



 

Data management: variable definition and justification 

Weekly measurements (soil temperature, soil moisture, precipitation from rain gauges, and minimum, 

average, and maximum growth stage) were interpolated to obtain daily estimates. Data from all sources 

were associated by site, year, location (sample site or field), and/or date using relational database 

software. 

A large number of variables were defined and calculated to assess their individual and combined effects 

on the response variables (FHB index, FDK, and DON). The definition and attributes of all explanatory 

variables which were included in the analysis are provided in   



Table 2Table 3,  
  



Table 4. A description and justification for the inclusion of each explanatory variable follows.  

Cropping information reported by producers was utilized to calculate the frequency of wheat and the 

frequency of cereal (wheat, barley, oats, canaryseed) crops in 4 year rotations, and the number of years 

since the last wheat and since the last cereal crop. Sporulation of the fungus occurs on infected residue 

persisting from previous crops, so increased frequency of wheat or other host crops, and recent 

production of wheat or host crops can contribute to an increased inoculum load (Osborne & Stein 2007, 

Schaafsma et al. 2005, Dill-Macky & Jones 2000). The amount of residue pre- and post-seeding were also 

included as variables affecting inoculum potential (Dill-Macky & Jones 2000).    

Wheat varieties, or more appropriately cultivars, differ in their level of resistance to FHB infection, and 

cultivar choice has consistently been shown to be a major factor for FHB management in wheat 

(Fernando et al. 2021, Ye et al. 2017). Cultivar resistance to FHB is assessed as part of the variety 

registration process, and cultivars are classified on a five-point scale of susceptible to resistant. The 

effect of genetic resistance was assessed both at the level of individual cultivars and grouped by 

resistance rating (moderately susceptible (MS), intermediate (I), or moderately resistant (MR)). 

Resistance rating was also assessed as a nominal value, representing increasing level of resistance 

(MS=2, I=3, MR=4).  

Good seed quality contributes to quick and even emergence, and subsequently, a uniformly developing 

crop and vigorous plants that are less vulnerable to pests and adverse conditions (Gilbert & Tekauz 

2000). A uniformly developing crop may also contribute to greater fungicide effectiveness as a function 

of the timing of application in relation to the growth stage of individual plants. Seed source (certified or 

farm-saved), seed size, contamination with Fusarium graminareum, seed treatment, seeding rate, 

seeding depth, applied fertilizer rates, residual soil nutrients and salts, and other measures of soil texture 

and quality were all included as variables that could affect crop vigour and uniformity of crop 

development.   

The date of anthesis (Zadoks 65) was determined for each sample site individually. Wheat is susceptible 

to infection from anthesis up to the soft dough stage but is most susceptible at anthesis (Fernando et al. 

2021, Kriss et al. 2010). The probability of higher inoculum load and crop exposure at susceptible stages 

increase as the growing season progresses (Gorczyca et al. 2018). Therefore, we would expect FHB 

infection to increase with later seeding dates, and later anthesis dates. This effect is likely dependent on 

cultivar and growing season conditions, thus we would expect to see interactions between seeding date 

or anthesis date and other variables. The standard deviation of growth stage was also calculated for each 

sample site using the minimum, average, and maximum growth stage at anthesis. Staginess of the crop 

at anthesis could contribute to a reduced fungicide efficacy. 

Application of foliar fungicide at or near anthesis has been shown to be an effective FHB management 

strategy (Bolanos-Carriel et al. 2020, Paul et al. 2018, Paul et al. 2008). Fungicide application at anthesis 

has been shown to be the most effective for control of FHB, however, post-anthesis fungicide 

applications have been shown to be equally effective (Bolanos-Carriel et al. 2020, Paul et al. 2018). The 

timing of fungicide application was calculated in relation to the date of anthesis at each sample site 

individually. Different fungicide active ingredients have been shown to have varying effectiveness against 

FHB infection (Bolanos-Carriel et al. 202, Paul et al. 2008), thus the effect of fungicide product, active 

ingredient(s), and mode of action group were each included separately. Fungicide water volume and 

application speed were included as they have implications for fungicide coverage. However, these 



effects would also be a function of nozzle type, size, and pressure, which were not included as they were 

not sufficiently reported. Reported fungicide rotations were utilized to calculate the frequency of the 

same fungicide active ingredient and the frequency of the same fungicide mode of action applied to 

wheat or applied to any cereal crop in four years. Repeated use of the same active ingredient or mode of 

action could lead to fungicide resistance and reduced efficacy (Betcher et al. 2010).  

Plant density, tiller density, and row spacing are measures of crop structure and spatial arrangement that 

could influence the canopy microclimate for spore production, dispersion, and infection severity (Jensen 

& Jorgensen 2016). Soil texture and other measures of soil quality can also affect microclimate within the 

crop.  

Daily values of environmental variables (soil temperature, soil moisture, precipitation from rain gauges, 

mean air temperature, GDD, precipitation, average relative humidity, and average wind speed) were 

averaged or totalled over specific pre- and post-anthesis intervals (3 days, 7 days, 14 days, and 30 days) 

for each sample site individually. Rain gauge measurement, precipitation, and GDD were also totalled for 

the entire season prior to anthesis. Environmental conditions experienced during varying lengths of time 

around the time of anthesis have been shown to be positively correlated with FHB intensity (Kriss et al. 

2010, De Wolf et al. 2003, Hooker et al. 2002). Conditions prior to anthesis affect disease risk as a 

function of spore production and dispersal (Gilbert et al. 2008, Paul et al. 2007), while conditions 

experienced after anthesis affect disease risk as a function of fungal infection of wheat spikes and 

production of mycotoxins (Cowger et al. 2009).   

  



Table 2. Definition and attributes of management variables included in multivariate analysis. 

Variable name Variable type Definition Replication 

wheatRotation4years Ordinal  Frequency of wheat in 4-year rotation; two values (1, 2)  Field 
yearsSinceWheat Ordinal Number of years since last wheat crop; three values (2, 3, 4) Field 
cerealRotation4years Ordinal Frequency of cereal crop (wheat, barley, oats, canaryseed) in 4-year rotation; three values (1, 2, 3) Field 
yearsSinceCerealCrop Ordinal Number of years since last cereal crop; four values (1, 2, 3, 4) Field 
wheatVariety Factor Wheat cultivar; 13 values Field 
FHBresistance Factor Varietal FHB resistance rating; three values (MS, I, MR) Field 
FHBresistanceScale Ordinal Varietal FHB resistance rating; three values (MS=2, I=3, MR=4) Field 
seedSource Factor Seed source; three values (Certified, FarmSaved, Unknown) Field 
seedTKW Continuous Thousand kernel weight of seed. Producer- or lab-reported in g per 1000 seeds; range 32 – 53 g 1000 

seeds-1  
Field 

seedTrt Factor Seed treatment product brand name; 9 values  Field 
percFusGram Continuous Percent Fusarium graminarium on seed; range 0 – 3% Field 
seedDateJulian Continuous Seeding date (julian calendar); range 112 (22 April) – 152 (1 June)  Field 
seedRateLbsAc Continuous Producer-reported seeding rate; range 105 – 168 lbs ac-1 Field 
seedFt2 Continuous Calculated seeding density, using producer-reported seeding rate and seed TKW; range 24.5 – 49.7 

seeds ft-2 
Field 

rowSpacingInch Continuous Producer-reported row spacing; range 9.8 – 12 in Producer 
seedDepth Continuous Producer-reported seeding depth; range 0.88 – 1.75 in Field 
fungProduct Factor Fungicide product brand/formulation; 9 values Field 
fungActive Factor Fungicide active ingredient; 7 values Field 
fungGroup Factor Fungicide mode of action group; three values (3, 3&7, 7&11) Field 
fungDaysFromAnthesis Continuous  Fungicide application date relative to anthesis date; range (-14) – (+8) days Sample Site 
fungWaterVolGalAc Continuous Fungicide application water volume; range 7.5 – 18.3 gal ac-1 Field 
fungSpeedMph Continuous Fungicide application speed; range 10 – 18 mph Field 
sameFungActiveWheat4Years Ordinal Frequency of the same fungicide active ingredient applied to wheat in 4 years; two values (0, 1) Field 
sameFungGroupWheat4Years Ordinal Frequency of the same fungicide group applied to wheat in 4 years; two values (0, 1) Field 
sameFungActiveCereal4Years Ordinal Frequency of the same fungicide active ingredient applied to cereals in 4 years; two values (0, 1) Field 
sameFungGroupCereal4Years Ordinal Frequency of the same fungicide group applied to cereals in 4 years; two values (0, 1) Field 
NRateTotalLbsAc Continuous Producer-reported, total rate of applied N fertilizer; range 94 – 190 lbs ac-1 Field 
PRateTotalLbsAc Continuous Producer-reported, total rate of applied P fertilizer; range 20 – 70 lbs ac-1 Field 
KRateTotalLbsAc Continuous Producer-reported, total rate of applied K fertilizer; range 0 – 32 lbs ac-1 Field 
SRateTotalLbsAc Continuous Producer-reported, total rate of applied S fertilizer; range 0 – 15 lbs ac-1 Field 

  



Table 3. Definition and attributes of agronomic variables included in multivariate analysis.  

Variable name Variable type Definition Replication 

percLitterPreSeed Continuous Pre-seed residue cover (percent of ground cover that is litter (not bare soil)); range 7 – 100%  Sample Site 
percLitterPostSeed Continuous Post-seed residue cover (percent of ground cover than is litter (not bare soil)); range 0 – 92%  Sample Site 
plantsM2 Continuous Plant density; range 131 – 463 plants m-2 Sample Site 
tillersM2 Continuous Tiller (head) density; range 177 – 894 heads m-2 Sample Site 
anthesisJulian Continuous Anthesis date (julian calendar date when average growth stage = Zadoks 65);  

range 182 (1 July) – 213 (1 August)  
Sample Site 

zadoksSD Continuous Standard deviation of growth stage at anthesis, indicates variability in crop stage; range 0.31-11.44 Sample Site 
soilQuality Factor Soil quality; six values (Calcareous, Gleyed, Orthic, Rego, Solodized, Solonetzic)  Sample Site 
soilColour Factor Soil colour; four values (Black, DarkBrown, DarkGray, Gray) Sample Site 
soilType Factor Soil type; three values (Chernozem, Luvisol, Solonetz) Sample Site 
surfaceTexture Factor Soil surface texture; 10 values (e.g. Clay, Loam, Silty Clay, etc.) Sample Site 
soilTexture Factor Soil texture; 8 values (e.g. Fine, Moderately Fine, Medium, etc.) Sample Site 
soilTextureGrade Ordinal Soil texture grade; 9 values from 1 (Fine) – 9 (Coarse)  Sample Site 
agCapabilityGrade Continuous Agricultural capability grade; range 1.0-4.4 Sample Site 
pH06 Continuous Soil pH at 0-6 in depth; range 5.0 – 8.3 Sample Site 
pH612 Continuous Soil pH at 6-12 in depth; range 5.5 – 8.5 Sample Site 
Omperc Continuous Percent soil organic matter; range 0.6 – 9.3% Sample Site 
nitratePPM06 Continuous Soil nitrate at 0-6 in depth; range 2.5 – 110 ppm Sample Site 
nitratePPM612 Continuous Soil nitrate at 6-12 in depth; range 1.5 – 100 ppm Sample Site 
POlsenPPM Continuous Soil phosphorus content; range 2 – 79 ppm Sample Site 
KPPM Continuous Soil potassium content; range 57 – 867 ppm Sample Site 
CaPPM Continuous Soil calcium content; range 644 – 8315 ppm Sample Site 
MgPPM Continuous Soil magnesium content; range 70 – 1375 ppm Sample Site 
NaPPM Continuous Soil sodium content; range 11 – 189 ppm Sample Site 
SPPM06 Continuous Soil sulfur content at 0-6 in depth; range 4 – 75 ppm Sample Site 
SPPM612 Continuous Soil sulfur content at 6-12 in depth; range 4 – 75 ppm Sample Site 
CECMeq100g Continuous Soil cation exchange capacity; range 4.4 – 50.3 mEq 100 g-1 Sample Site 

 
  



Table 4. Definition and attributes of environmental variables included in multivariate analysis.  

Variable name Variable type Definition Replication 

avgSoilMois Continuous Volumetric soil moisture, averaged over the specified pre- or post-anthesis time interval; range  
30 days (pre):  4.1 – 49.9%; 14 days (pre): 3.1 – 51.6%; 7 days (pre):  1.4 – 55.5%; 3 days (pre): 1.0 – 57.2%;  
3 days (post): 1.1 – 57.4%; 7 days (post): 1.2 – 55.5%; 14 days (post): 2.4 – 52.2%; 30 days (post): 2.9 – 45.7% 

Sample Site 

cumRain Continuous Total seasonal rain accumulation at anthesis, based on rain gauge measurement; range 32.3 – 170.5 mm Sample Site 
totalRain Continuous Rain accumulation based on rain gauge measurement, totalled over the specified pre- or post-anthesis interval; range 

30 days (pre):  11.4 – 114.1 mm; 14 days (pre): 4.6 – 78.1 mm; 7 days (pre): 1.2 – 40.1 mm;  
3 days (pre): 0 – 17.2 mm; 3 days (post): 0 – 14.3 mm; 7 days (post): 0 – 29.6 mm;  
14 days (post): 0.5 – 49.1 mm; 30 days (post): 0.5 – 91.0 mm 

Sample Site 

cumPrecipMm Continuous Total growing season precipitation at anthesis, based on regional weather data; range 116.5 – 311.4 mm Sample Site 
totalPrecip Continuous Precipitation,  based on regional weather data, totalled over the specified pre- and post-anthesis intervals;  

range 30 days (pre): 29.7 – 14 mm; 14 days (pre): 3.4 – 89.3 mm; 7 days (pre): 0.0 – 58.3 mm;  
3 days (pre): 0.0 – 47.6 mm; 3 days (post): 0.0 – 47.6 mm; 7 days (post): 0.0 – 58.5 mm;  
14 days (post): 1.1 – 90.4 mm; 30 days (post): 7.6 – 96.4 mm 

Sample Site 

avgSoilTemp Continuous Soil temperature, averaged over the specified pre- and post-anthesis intervals; range  
30 days (pre): 13.3 – 22.4°C; 14 days (pre): 13.7 – 21.9°C; 7 days (pre): 14.0 – 20.6°C;  
3 days (pre): 13.6 – 19.3°C; 3 days (post): 12.1 – 20.1°C; 7 days (post): 12.0 – 19.6°C;  
14 days (post): 13.5 – 20.0°C; 30 days (post): 13.5 – 19.4°C 

Sample Site 

avgMeanT Continuous Mean air temperature, based on regional weather data, averaged over the specified pre- and post-anthesis intervals; 
range 30 days (pre): 15.0 – 18.7°C; 14 days (pre): 15.9 – 20.0°C; 7 days (pre): 15.3 – 20.8°C;  
3 days (pre): 14.5 – 22.8°C; 3 days (post): 14.5 – 22.8°C; 7 days (post): 16.1 – 20.8°C;  
14 days (post): 16.7 – 20.5°C; 30 days (post): 15.7 – 19.6°C 

Sample Site 

cumGDD Continuous Total seasonal growing degree days accumulation at anthesis; range 582 – 899  Sample Site 
totalGDD Continuous Growing degree days accumulation, totalled over the specified pre- and post-anthesis intervals; range  

30 days (pre): 301 – 412; 14 days (pre): 152 – 210; 7 days (pre): 72 – 111; 3 days (pre): 29 – 53;  
3 days (post): 29 – 53; 7 days (post): 78 – 111; 14 days (post): 164 – 218; 30 days (post): 321 – 438 

Sample Site 

avgRH Continuous Relative humidity, averaged over the specified pre- and post-anthesis intervals; range 30 days (pre): 61 – 76%;  
14 days (pre): 65 – 78%; 7 days (pre): 66 – 81%; 3 days (pre): 61 – 85%; 3 days (post): 61 – 84%;  
7 days (post): 64 – 81%; 14 days (post): 64 – 79%; 30 days (post): 63 – 76% 

Sample Site 

avgWindSpd Continuous Wind speed, averaged  over the specified pre- and post-anthesis intervals; range  
30 days (pre): 11 – 19 km hr-1; 14 days (pre): 10 – 17 km hr-1; 7 days (pre): 8 – 18 km hr-1;  
3 days (pre): 8 – 21 km hr-1; 3 days (post): 8 – 22 km hr-1; 7 days (post): 9 – 19 km hr-1;  
14 days (post): 10 – 17 km hr-1; 30 days (post): 11 – 16 km hr-1 

Sample Site 

 

  



Statistical analysis 

Multiple regression with mixed-effect models was used to assess the effect of various explanatory 

variables on the three response variables: FHB index, FDK, and DON. Mixed-effects models appropriately 

deal with non-homogeneity of variance resulting from the unbalanced and nested data structure. FHB 

index and FDK were log-transformed to deal with non-normal distribution of model residuals resulting 

from left-skewed data. A constant was added to all values prior to transforming to deal with values of 

zero. DON was transformed to a binary response (0 = none detected, 1 = any level of DON detected), to 

deal with the issue of zero-inflated data.  

Data were analyzed with the R statistical program, version 4.0.4 (R Core Team 2021), using the lme4 

package (Bates et al. 2015) for fitting mixed-effects models, and the lmerTest package (Kuznetsova et al. 

2017) for assessing model fit and effect significance. FHB index was replicated at the sample site level, so 

the nested random effects were specified as location, year within location, producer within year within 

location, and field within producer within year within location. For response variables replicated at the 

field level (FDK, DON), the nested random effects were specified as location, year within location, and 

producer within year within location. Time of sampling was also included as a random effect in the 

models for soil temperature. Only linear effects were included in the regression models. 

First, single-variable models were fitted to examine the individual effect of each explanatory variable on 

FHB Index, FDK, and DON. For each of the response variables, separate mixed-effect models were fitted 

with each explanatory variable as a single fixed effect. Then, based on the results of the univariate 

models, FDK was chosen for the multivariate analysis. For the multivariate analysis, a competing models 

approach was chosen to assess additive and interactive effects with combinations of two explanatory 

variables. This approach allows us to evaluate the relative influence of each variable and each 

combination of variables by comparing the goodness of fit of a set of candidate models. The competing 

models approach was chosen because of the relatively low level of replication in relation to the large 

number of explanatory variables, and the high level of inter-correlation among the explanatory variables.   

 

RESULTS AND DISCUSSION           

Fusarium occurrence and distribution 

Measurements of FHB index, FDK, and DON were variable between locations and years. FHB Index was 

similar among locations in 2018 and 2019, but differed among locations in 2020, where FHB was higher 

in Melfort and Scott but remained low in Indian Head (Figure 1). FDK showed greater variability, with no 

observable pattern within either year or location (Figure 2). DON values appeared to be highest in 2018 

and lowest in 2019 in all locations (Figure 3). FHB index and DON appeared to have similar patterns 

across years and locations, indicating that the two may be correlated or influenced by the same 

variables. FDK did not appear to be correlated with either FHB index or DON. Environmental conditions 

appeared to have had a larger influence on FHB index and DON than FDK.   



 
Figure 1. The distribution of Fusarium Head Blight (FHB) Index (log-transformed values) within years and locations. 
Upper and lower limits of the boxes indicate the first and third quartiles, and whiskers indicate the range of values 
outside the quartiles, with extreme values shown as single points. The centre point indicates the mean. 

 

 
Figure 2. The distribution of Fusarium damaged kernels (FDK, log-transformed values) within years and locations. 
Upper and lower limits of the boxes indicate the first and third quartiles, and whiskers indicate the range of values 
outside the quartiles, with extreme values shown as single points. The centre point indicates the mean. 

 

 
Figure 3. The distribution of deoxynivalenol (DON) level in parts per million (ppm) within years and locations. Upper 
and lower limits of the boxes indicate the first and third quartiles, and whiskers indicate the range of values outside 
the quartiles, with extreme values shown as single points. The centre point indicates the mean. 

 



Single-variable models   

Significance tests for the individual effect of each explanatory variable on the three response variables 

are shown in  

  



Table 5, Table 6Table 7. The three response variables did not have similar or consistent responses to 

many of the same agronomic and environmental variables, further suggesting that the response 

variables were not correlated, and that assessment of FHB infection using all three variables was not 

redundant. Correlations among FHB index, FDK, and DON have been shown to be dependent on 

genotype and environment (Goral et al. 2019, Del Ponte et al. 2007, Paul et al. 2006, Mesterházy et al. 

2005). FHB index had fewer significant relationships than either FDK or DON, reflecting the greater 

subjectivity of in-field assessments, especially in consideration of the smaller scale of replication, at the 

sample site level.  

In an observational study with a multivariate data set, results of univariate models should be interpreted 

with caution as they could be misleading. In this case, the inclusion of random effects as part of the 

mixed models should control for a large portion of confounded or unmodeled effects. Unmodeled 

effects become increasingly unimportant as more variables are added to the same model in a multiple 

regression. Further, as per the objectives of this study, we expect that significant interactions will be 

revealed as additional variables are included in the models, which could affect the significance of 

individual variables or direction of the relationships. Therefore, significant univariate relationships will be 

highlighted briefly, but interpretation of results will be focused on the multiple regression analysis which 

follows.  

Overall, visual symptoms of FHB in the field were positively associated with 1) row spacing, 2) pre-

anthesis regional precipitation (total cumulative) and wind speed (7 and 14 days), and 3) post-anthesis 

air temperature (3, 7, and 30 days) and GDD (3, 7, and 30 days). FHB index was negatively associated 

with 1) the number of years since the last wheat crop, 2) residual soil nitrate, potassium (K), and sodium 

(Na), 3) pre-anthesis wind speed (30 days), and 4) post-anthesis relative humidity (14 days) and wind 

speed (30 days).  

The level of Fusarium-damaged kernels (FDK) differed significantly between wheat varieties, fungicide 

product, fungicide active ingredients, fungicide mode of action groups, soil types, and soil textures. FDK 

was positively associated with 1) number of cereal crops in 4-year rotation, 2) seed contamination with 

Fusarium graminarium, 3) seeding density, 4) coarseness of soil texture, 5) residual magnesium (Mg), 6) 

pre-anthesis rain gauge precipitation (3, 7, 14, 30 days, and total cumulative), regional precipitation (7 

and 30 days), and relative humidity (14 days), and 7) post-anthesis soil moisture (7 and 14 days), rain 

gauge precipitation (3, 7, and 14 days), and relative humidity (3, 7, and 14 days). FDK was negatively 

associated with 1) seed size, 2) seeding date, 3) fungicide application timing (negative values prior to 

anthesis, thus FDK decreases as application date approaches and passes anthesis), 4) repeated use of the 

same fungicide group on previous wheat crops, 5) anthesis date, 6) subsoil pH, 7) residual sulfur (S), 8) 

pre-anthesis soil temperature (3 and 7 days), air temperature (3, 7, 14,  and 30 days), and GDD (3, 7, 14, 

30 days, and total cumulative), and 9) post-anthesis soil temperature (3 and 7 days), air temperature (3 

days), and GDD (3 days).  

The level of deoxynivalenol (DON) contamination differed significantly between wheat varieties, FHB 

resistance groups, soil types, and soil textures. DON was positively associated with 1) number of years 

since the last wheat crop or cereal crop, 2) seeding density, 3) topsoil pH, 4) topsoil residual nitrate, 

calcium (Ca), and magnesium (Mg), 5) soil cation exchange capacity, 6) pre-anthesis soil moisture (14 

days), rain gauge precipitation (3, 7, 14, and 30 days), air temperature (3 and 7 days), GDD (3 and 7 

days), and wind speed (3, 14, and 30 days), and 7) post-anthesis regional precipitation (3, 7, and 14 days) 



and relative humidity (3, 7, and 14 days). DON was negatively associated with 1) number of wheat crops 

in 4-year rotation, 2) genotypic resistance, 3) fungicide application speed, 4) repeated use of the same 

fungicide active ingredient or group on previous wheat or cereal crops, 5) amount of pre-seed residue, 6) 

anthesis date, 7) residual phosphorus (P), 8) pre-anthesis relative humidity (7, 14, and 30 days), and 9) 

post-anthesis air temperature (3, 7, and 14 days) and GDD (3, 7 and 14 days). 

For DON especially, the direction of the relationships were not all as would be expected, suggesting the 

possibility of spurious correlations. DON levels were all generally very low; 56% of samples had zero or 

undetectable levels of DON, and 96% of samples were lower than 1 ppm. The variable was converted to 

a binary response (0=undetected, 1=detected) for the analysis to deal with the issue of zero-inflation, 

and so predictability may have been affected. DON was not included in the multivariate analysis.   

  



Table 5. Significance tests for the individual effect of each management variable on the three response variables. 
Each variable was included as a single fixed effect in separate mixed effects models with random effects as stated 
in the text. Factor variables result in ANOVA-type models, showing F-test results, while continuous and ordinal 
variables result in regression type models, showing t-test results. P-values <0.05 are bolded for emphasis, and for 
regression models, the sign of the regression co-efficient is shown in brackets to indicate the direction of the 
relationship.    

Explanatory variable FHB index FDK DON 

wheatRotation4years 0.940 0.150 <0.001 (-) 
yearsSinceWheat 0.694 0.161 0.002 (+) 
cerealRotation4years 0.135 0.015 (+) 0.567 
yearsSinceCerealCrop 0.031 (-) 0.719 0.002 (+) 
wheatVariety 0.971 <0.001 0.003 
FHBresistance 0.337 0.639 <0.001 
FHBresistanceScale 0.833 0.853 <0.001 (-) 
seedSource 0.856 0.103 0.360 
seedTKW 0.427 0.001 (-) 0.778 
seedTrt 0.530 0.358 0.108 
percFusGram 0.583 0.035 (+) 0.112 
seedDateJulian 0.952 <0.001 (-) 0.479 
seedRateLbsAc 0.662 0.150 0.231 
seedFt2 0.183 <0.001 (+) 0.038 (+) 
rowSpacingInch 0.026 (+) 0.659 0.392 
seedDepth 0.559 0.648 0.386 
fungProduct 0.513 0.004 0.270 
fungActive 0.892 0.001 0.157 
fungGroup 0.773 0.002 0.603 
fungDaysFromAnthesis 0.095 0.001 (-) 0.989 
fungWaterVolGalAc 0.237 0.218 0.921 
fungSpeedMph 0.862 0.825 0.011 (-) 
sameFungActiveWheat4Years 0.960 0.755 0.001 (-) 
sameFungGroupWheat4Years 0.813 0.031 (-) <0.001 (-) 
sameFungActiveCereal4Years 0.748 0.581 0.002 (-) 
sameFungGroupCereal4Years 0.737 0.263 <0.001 (-) 
NRateTotalLbsAc 0.505 0.637 0.718 
PrateTotalLbsAc 0.237 0.330 0.911 
KrateTotalLbsAc 0.674 0.847 0.857 
SrateTotalLbsAc 0.123 0.844 0.426 

 

  



Table 6. Significance tests for the individual effect of each agronomic variable on the three response variables. Each 
variable was included as a single fixed effect in separate mixed effects models with random effects as stated in the 
text. Factor variables result in ANOVA-type models, showing F-test results, while continuous and ordinal variables 
result in regression type models, showing t-test results. P-values <0.05 are bolded for emphasis, and for regression 
models, the sign of the regression co-efficient is shown in brackets to indicate the direction of the relationship.    

Explanatory variable FHB index FDK DON 

percLitterPreSeed 0.088 0.627 0.019 (-) 
percLitterPostSeed 0.057 0.301 0.134 
plantsM2 0.112 0.790 0.195 
tillersM2 0.801 0.371 0.650 
anthesisJulian 0.167 0.002 (-) 0.009 (-) 
zadoksSD 0.924 0.859 0.547 
soilQuality 0.411 0.003 0.057 
soilColour 0.630 0.485 0.997 
soilType 0.804 0.021 0.014 
surfaceTexture 0.859 <0.001 0.005 
soilTexture 0.648 <0.001 0.013 
soilTextureGrade 0.616 0.024 (+) 0.105 
agCapabilityGrade 0.156 0.470 0.087 
pH06 0.544 0.066 <0.001 (+) 
pH612 0.061 <0.001 (-) 0.764 
Omperc 0.590 0.304 0.919 
nitratePPM06 0.010 (-) 0.168 0.029 (+) 
nitratePPM612 0.011 (-) 0.180 0.155 
POlsenPPM 0.539 0.912 0.022 (-) 
KPPM 0.033 (-) 0.813 0.817 
CaPPM 0.801 0.387 0.005 (+) 
MgPPM 0.642 0.013 (+) 0.003 (+) 
NaPPM 0.028 (-) 0.496 0.259 
SPPM06 0.902 0.111 0.988 
SPPM612 0.920 0.024 (-) 0.513 
CECMeq100g 0.987 0.188 0.002 (+) 

 

  



Table 7. Significance tests for the individual effect of each environmental variable on the three response variables. 
Each variable was included as a single fixed effect in separate mixed effects models with random effects as stated in 
the text. Factor variables result in ANOVA-type models, showing F-test results, while continuous and ordinal variables 
result in regression type models, showing t-test results. P-values <0.05 are bolded for emphasis, and for regression 
models, the sign of the regression co-efficient is shown in brackets to indicate the direction of the relationship. 

Explanatory variable FHB index FDK DON 

avgSoilMois30daysPre 0.434 0.794 0.054 
avgSoilMois14daysPre 0.224 0.261 0.010 (+) 
avgSoilMois7daysPre 0.569 0.919 0.169 
avgSoilMois3daysPre 0.706 0.381 0.188 
avgSoilMois3daysPost 0.416 0.111 0.115 
avgSoilMois7daysPost 0.457 0.025 (+) 0.180 
avgSoilMois14daysPost 0.232 0.033 (+) 0.152 
avgSoilMois30daysPost 0.136 0.297 0.202 
cumRain 0.160 <0.001 (+) 0.285 
totalRain30daysPre 0.503 <0.001 (+) <0.001 (+) 
totalRain14daysPre 0.565 <0.001 (+) <0.001 (+) 
totalRain7daysPre 0.758 <0.001 (+) 0.002 (+) 
totalRain3daysPre 0.256 <0.001 (+) 0.001 (+) 
totalRain3daysPost 0.234 <0.001 (+) 0.228 
totalRain7daysPost 0.453 <0.001 (+) 0.905 
totalRain14daysPost 0.679 <0.001 (+) 0.398 
totalRain30daysPost 0.964 0.473 0.106 
cumPrecipMm 0.043 (+) 0.256 0.864 
totalPrecip30daysPre 0.386 0.013 (+) 0.134 
totalPrecip14daysPre 0.854 0.725 0.884 
totalPrecip7daysPre 0.093 0.044 (+) 0.462 
totalPrecip3daysPre 0.666 0.164 0.251 
totalPrecip3daysPost 0.137 0.903 <0.001 (+) 
totalPrecip7daysPost 0.185 0.732 0.020 (+) 
totalPrecip14daysPost 0.063 0.653 0.017 (+) 
totalPrecip30daysPost 0.178 0.515 0.359 
avgSoilTemp30daysPre 0.634 0.503 0.752 
avgSoilTemp14daysPre 0.981 0.808 0.472 
avgSoilTemp7daysPre 0.622 0.017 (-) 0.538 
avgSoilTemp3daysPre 0.412 <0.001 (-) 0.974 
avgSoilTemp3daysPost 0.112 0.006 (-) 0.675 
avgSoilTemp7daysPost 0.085 0.018 (-) 0.623 
avgSoilTemp14daysPost 0.197 0.065 0.694 
avgSoilTemp30daysPost 0.308 0.965 0.689 
avgMeanT30daysPre 0.239 <0.001 (-) 0.425 
avgMeanT14daysPre 0.135 0.009 (-) 0.083 
avgMeanT7daysPre 0.994 0.001 (-) 0.027 (+) 
avgMeanT3daysPre 0.842 <0.001 (-) 0.026 (+) 
avgMeanT3daysPost 0.042 (+) 0.003 (-) 0.001 (-) 
avgMeanT7daysPost <0.001 (+) 0.256 0.023 (-) 
avgMeanT14daysPost 0.211 0.919 0.004 (-) 
avgMeanT30daysPost 0.006 (+) 0.417 0.112 
cumGDD 0.070 <0.001 (-) 0.298 
totalGDD30daysPre 0.215 <0.001 (-) 0.565 
totalGDD14daysPre 0.108 0.010 (-) 0.065 
totalGDD7daysPre 0.992 0.001 (-) 0.037 (+) 
totalGDD3daysPre 0.840 <0.002 (-) 0.029 (+) 
totalGDD3daysPost 0.040 (+) 0.003 (-) 0.002 (-) 
totalGDD7daysPost <0.001 (+) 0.282 0.023 (-) 
totalGDD14daysPost 0.223 0.979 0.002 (-) 
totalGDD30daysPost 0.011 (+) 0.326 0.079 
avgRH30daysPre 0.701 0.136 0.025 (-) 
avgRH14daysPre 0.075 0.012 (+) 0.027 (-) 
avgRH7daysPre 0.060 0.074 0.016 (-) 
avgRH3daysPre 0.435 0.772 0.338 
avgRH3daysPost 0.247 0.010 (+) <0.001 (+) 
avgRH7daysPost 0.135 <0.001 (+) 0.004 (+) 
avgRH14daysPost 0.001 (-) <0.001 (+) 0.006 (+) 
avgRH30daysPost 0.075 0.490 0.154 
avgWindSpd30daysPre 0.044 (-) 0.055 0.013 (+) 
avgWindSpd14daysPre 0.001 (+) 0.411 0.003 (+) 
avgWindSpd7daysPre 0.001 (+) 0.253 0.448 
avgWindSpd3daysPre 0.067 0.257 0.001 (+) 
avgWindSpd3daysPost 0.204 0.904 0.528 
avgWindSpd7daysPost 0.746 0.852 0.089 
avgWindSpd14daysPost 0.266 0.136 0.356 
avgWindSpd30daysPost 0.016 (-) 0.639 0.695 



Multiple regression and model selection 

The competing models approach presented by Symonds & Moussalli (2011) was followed, in 

consideration of the issues introduced via the inclusion of interactions (Grueber et al. 2011). This method 

utilizes the Akaike’s Information Criterion (AIC) to compare and rank multiple candidate models and to 

estimate which of them best describes the response variable. The AIC is a measure of the goodness of fit 

of a statistical model and is a function of the maximum likelihood estimate of a model and the number of 

fitted parameters. As the maximum likelihood is dependent on the number of observations (rows of 

data) in a data set, all of the models being compared must be based on the same data set, so 

observations with missing values must be omitted. In order to maximize both the number of explanatory 

variables and the number of observations included in the analysis, first, the variables with whole years or 

locations of missing values were omitted (all variables based on soil sample analysis). Then, from the 

remaining variables with missing values, fungicide application timing was chosen as a high priority 

variable, and all observations with missing values for this variable were removed from the data set. 

Many of the missing values from other variables were from the same rows of data, leaving a total of 266 

observations from the original 314 in the data set. Any other variables that still had missing values were 

then also omitted (seed size, percent F. Graminarium on seed, seeding depth, fungicide water volume, 

fungicide application speed, all fungicide rotation variables, applied fertilizer rates, percent litter post-

seed, and all rain gauge variables). Using all the remaining explanatory variables, the candidate set of 

models was comprised of all combinations of two-variable models and their interactions, as well as all 

single-variable models, for a total of 3916 possible candidate models. In order to assess interactive 

effects but also equalize the AIC calculation across models, all two-variable models included an 

interaction term, whether or not an interaction was likely or expected.  

Models with combinations of variables that had issues of non-convergence, rank-deficiency, or 

singularity were also omitted from the candidate set. When the models were run with FHB index as the 

response variable, a large majority of the models presented these issues, while only a small proportion of 

models had such issues with FDK as the response variable. Consequently, competing models analysis was 

not completed for FHB index. These issues were all likely resulting from insufficient replication, especially 

for factor variables with many grouping levels, or with highly correlated variable combinations. For the 

same reasons, models with greater than two variables could not be included in the candidate set for FDK. 

The final candidate set for FDK included 3286 models.  

The candidate models were chosen in consideration of the high level of inter-correlation among 

explanatory variables. Comparing and ranking all possible combinations of explanatory variables justifies 

the inclusion of highly correlated variables in the same model. We expect the predictive power of 

variables to be similar to the extent that they are correlated; however, it is important to include each of 

these variable combinations because their effects may be independent beyond the extent to which they 

are correlated. Thus, models that differ only in the substitution of correlated variables will be ranked 

similarly if effects of the correlated variables are similar. The small number of models that were omitted 

because of issues with model fit should have minimal effect on the rankings as the candidate set is large, 

and because those models likely had poor fit or the variables were very highly correlated. 

The AIC of each candidate model was obtained, the models were ranked from lowest to highest AIC, and 

the difference in AIC from the highest ranked model (ΔAIC) was calculated for each model. To assess the 

relative strength of each candidate model, the Aikaike weight (wi) was calculated for each model. The 



Akaike weight is a value between 0 and 1, with the sum of Akaike weights of all models in the candidate 

set being 1. The Aikaike weight indicates the probability that the model represents the most accurate 

description of the response variable, relative to other models in the candidate set. The twenty top-

ranked models are listed along with their Aikaike weights in  



Table 8. The single top-ranked model had an Aikaike weight of 0.99, indicating that there was a 99% 

probability that the combination of cultivar and average soil temperature 14 days post-anthesis was the 

most influential on the development of FDK in the crop. All other models had Aikaike weights less than 

0.1. Variety was included in the top eight models, mainly in combination with soil temperature variables, 

both pre- and post-anthesis. The second ranked model included a significant interaction with soil 

moisture 3 days pre-anthesis. The soil temperature variables were likely all highly inter-correlated, but 

apart from soil moisture, no other environmental variable was ranked highly in combination with variety. 

This indicates a strong overall moderating effect of soil temperature on FDK development among 

different varieties.   

Forward-selection was used to confirm the additive and interactive effects of the combinations of 

variables included in the top-weighted models. Forward selection begins with the null model, which 

includes only the random effects. The addition of fixed effects to the null model is justified if the more 

complex model has significantly better fit than the null model (χ2 (chi-square) test, P<0.05). All of the 

top-ranked models had significant χ2 tests, confirming that each combination of variables significantly 

affected FDK (Table 8). The first variable in the top-ranked models was always a management factor 

(variety/cultivar, cultivar resistance group, fungicide product, group, or active ingredient) or static 

agronomic factor (soil texture), while the second variable was a non-static environmental variable or 

other continuous variable that would be a function of environmental conditions (seeding date, anthesis 

date). F-test results of the individual fixed effects in each model also showed that in most cases, only the 

first variable and the interaction were significant, while the second variable was rarely significant as an 

individual fixed effect. This strongly suggests that management practices are in fact highly effective for 

FHB management, however their effectiveness is also highly moderated by environmental conditions. 

Thus, in producers’ fields, where efforts to manage FHB are always in place, the effects of environment 

do not appear to be additive, but rather entirely interactive with management.    

 

 



Table 8. Top ranked models out of the candidate set of 3286 competing models for Fusarium Damaged Kernels (FDK). 
Models included the two single fixed effects plus their interaction, and random effects as specified in text. ΔAIC is the 
difference in AIC between each model and the top ranked model. The Akaike weight (wi) indicates the probability that the 
model represents the most accurate description of the response variable, relative to other models in the candidate set. 
The χ2 test indicates whether the model fit is significantly better than the null model with no fixed effects. F-test results 
indicate the significance of each fixed effect.  

Model 
rank 

Variable 1 Variable 2 ΔAIC wi 
χ2 

(vs null) 
P(>F) 

Variable 1 
P(>F) 

Variable 2 
P(>F) 

Interaction 

1 wheatVariety avgSoilTemp14daysPost 0 0.999 142.1, P<0.001 <0.001 0.471 <0.001 
2 wheatVariety avgSoilMois3daysPre 14.1 0.001 189.6, P<0.001 <0.001 0.603 <0.001 
3 wheatVariety avgSoilTemp30daysPost 17.3 <0.001 118.9, P<0.001 <0.001 0.738 <0.001 
4 wheatVariety avgSoilTemp3daysPost 17.4 <0.001 123.8, P<0.001 <0.001 0.556 <0.001 
5 wheatVariety avgSoilTemp3daysPre 20.4 <0.001 117.9, P<0.001 <0.001 0.426 <0.001 
6 wheatVariety avgSoilTemp7daysPre 33.4 <0.001 100.8, P<0.001 <0.001 0.611 <0.001 
7 wheatVariety avgSoilTemp14daysPre 34.3 <0.001 100.0, P<0.001 <0.001 0.359 <0.001 
8 wheatVariety avgSoilTemp30daysPre 35.6 <0.001 98.3, P<0.001 <0.001 0.406 0.001 
9 fungProduct avgRH14daysPost 42.0 <0.001 75.2, P<0.001 <0.001 0.351 <0.001 
10 FHBresistance  seedDateJulian 44.0 <0.001 66.6, P<0.001 <0.001 0.155 <0.001 
11 fungGroup avgRH14daysPost 44.8 <0.001 47.1, P<0.001 0.010 0.118 0.011 
12 fungGroup avgMeanT30daysPre 45.6 <0.001 37.6, P<0.001 0.036 0.007 0.035 
13 fungActive avgRH14daysPost 46.1 <0.001 62.1, P<0.001 0.010 0.336 0.010 
14 soilTexture anthesisJulian 46.5 <0.001 82.5, P<0.001 0.006 0.711 0.006 
15 FHBResistance avgMeanT14daysPre 49.3 <0.001 48.6, P<0.001 <0.001 <0.001 <0.001 
16 FHBResistance avgSoilMois3daysPre 49.3 <0.001 66.3, P<0.001 <0.001 0.001 <0.001 
17 soilTexture avgSoilTemp3daysPre 50.6 <0.001 65.5, P<0.001 0.086 0.663 0.085 
18 fungProduct avgMeanT14daysPre 50.9 <0.001 47.1, P<0.001 0.011 0.402 0.009 
19 FHBResistance avgSoilMois3daysPost 51.1 <0.001 64.8, P<0.001 <0.001 <0.001 <0.001 
20 fungGroup avgRH7daysPost 51.8 <0.001 43.8, P<0.001 0.012 0.020 0.014 

 



   

The combination of variety and soil temperature clearly had an overwhelmingly greater influence on the 

response variable, relative to all other combinations of variables. As the effect of variety was individually 

significant, differentiation in the level of FDK by variety, over all years and locations, is shown in Figure 4. 

Starting with the interaction model and using stepwise model simplification, the initial 12 wheat varieties 

were combined into 4 statistically similar response types, with no significant decrease in model fit (full vs 

combined model, χ2=18.9, P=0.167). The remaining 4 groups differed significantly in their interaction 

with soil temperature. The interaction was examined graphically using the parameter estimates of the 

final model (Figure 5). Interestingly, the response types did not correspond to the varieties’ FHB 

resistance ratings. Furthermore, variety was more influential than resistance rating in predicting FDK 

development (Table 8), indicating that the greater specificity of grouping provided better differentiation 

of the level of FDK in the crop. The level of FDK was consistently low in Type 1 varieties (Brandon, 

Cameron, Utmost, Elie, Alloy, Hughes) and did not appear to be affected by soil temperature post-

anthesis. Type 2 varieties (Cardale, Titanium, Paramount) had higher levels of FDK, but were also 

unaffected by post-anthesis soil temperature. Type 3 varieties (Redberry, Stettler) had a negative 

relationship with post-anthesis soil temperature, while type 4 (Landmark) had FDK levels that increased 

with post-anthesis soil temperatures.  

 
Figure 4. Level of Fusarium damaged kernels (FDK) by variety over all years and locations. Error bars indicate the 
standard error. Log-transformed values are shown to better illustrate the level of differentiation.  
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Figure 5. The interaction of variety and post-anthesis soil temperature on the level of Fusarium-Damaged Kernels 
(FDK). The 12 wheat varieties were combined into 4 response types which differed significantly in their interaction 
with post-anthesis soil temperature (Type 1 = Brandon, Cameron, Utmost, Elie, Alloy, Hughes; Type 2 = Cardale, 
Titanium; Type 3 = Redberry, Stettler; Type 4 = Landmark). The range of soil temperatures shown represent the first 
to the third quartiles. 

 

To compare the relative effect of the other variables more equitably, all the models which included 

variety were removed from the candidate set and the model weights were re-calculated (  
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Table 9). Models initially ranked 9th to 18th (Table 8) made up the ten top-ranked models. The models 

were more equally weighted, with greater uncertainty in the ranking. Because of greater model 

uncertainty, predictor weights for each variable were also calculated by adding the Akaike weights from 

all the models in which that variable was included ( 

Table 10). Predictor weights indicate the probability that the variable is the most influential on the 

response variable, relative to the other variables in the candidate model set. The highest weighted 

predictor was an environmental variable, average relative humidity 14 days post-anthesis, and was 

included in three of the ten top-ranked models. Top-ranked variables representing pre-anthesis 

environmental conditions were mainly related to temperature, while top-ranked post-anthesis 

environmental conditions were related to moisture. However, it should again be noted that the second 

variable in each model was often only significant as an interactive effect with the first variable (Table 8), 

and so the effects of environmental variables were not examined individually but only as interactions.  

 
  



Table 9. Top ranked models out of the candidate set of competing models for Fusarium Damaged Kernels (FDK), not 
including models with variety as a predictor. Models included the single variables as specified, plus their 
interaction, and random effects as specified in text. ΔAIC is the difference in AIC between each model and the top 
ranked model. The Akaike weight (wi) indicates the probability that the model represents the most accurate 
description of the response variable, relative to other models in the candidate set. Refer to Table 8 for χ2 test for 
model fit and F-test results of fixed effects. 

Variable 1 Variable 2 ΔAIC wi 

fungProduct avgRH14daysPost 0 0.524 
FHBresistance  seedDateJulian 2.00 0.193 
fungGroup  avgRH14daysPost 3.65 0.084 
fungGroup  avgMeanT30daysPre 4.14 0.066 
fungActive avgRH14daysPost 4.48 0.056 
soilTexture anthesisJulian 7.28 0.014 
FHBresistance  avgMeanT14daysPre 7.37 0.013 
FHBresistance  avgSoilMois3daysPre 8.63 0.007 
soilTexture avgSoilTemp3daysPre 8.90 0.006 
fungProduct avgMeanT14daysPre 9.07 0.006 

 

Table 10. Predictor weights (W) for the top-weighted explanatory variables included in the candidate competing 
models set for Fusarium Damaged Kernels (FDK), not including models with variety as a predictor. Predictor weights 
indicate the probability that the variable is the most influential on the response variable, relative to the other 
variables in the candidate model set.  

Variable W 

avgRH14daysPost 0.668 
fungProduct 0.530 
FHBresistance 0.220 
seedDateJulian 0.196 
fungGroup 0.155 
avgMeanT30daysPre 0.068 
fungActive 0.057 
soilTexture 0.024 
avgMeanT14daysPre 0.023 
anthesisJulian 0.014 
avgSoilTemp3daysPre 0.007 
avgSoilMois3daysPre 0.007 
avgRH7daysPost 0.004 
avgSoilMois3daysPost 0.004 
avgMeanT3daysPre 0.003 

 

  



A few of the top ranked models were plotted as examples of the interactive effects of the combination of 

variables on FDK in the crop. The highest-ranked model included a significant interaction between 

fungicide product and average relative humidity 14 days post-anthesis. Fungicide product had a 

significant effect on the level of FDK individually, and the fungicide products were differentially 

influenced by post-anthesis average relative humidity (Figure 6). Using stepwise model simplification, the 

initial 7 fungicide products were combined into 3 groups, with no significant decrease in model fit (full vs 

combined model, χ2=11.4, P=0.181). The different groups differed significantly in their interaction with 

post-anthesis relative humidity. Interestingly, the model’s grouping did not correspond to fungicide 

groups or fungicide active ingredients. Furthermore, product was ranked higher than either fungicide 

group or fungicide active ingredient (Table 10), indicating that this grouping provided better 

differentiation of the level of FDK in the crop. All but two of the products were grouped together and 

had lower values of FDK, while significantly higher levels of FDK were seen with Priaxor. Prosaro XTR was 

the only product to appear to have a significant interaction with post-anthesis relative humidity; FDK was 

very low with lower relative humidity post-anthesis but increased significantly with higher relative 

humidity.  

The next highest ranked model had a significant interaction between FHB resistance group and seeding 

date (Figure 7). The effect of FHB resistance rating was individually significant (Table 8), however the 

effect is difficult to interpret graphically. The resistance rating groups were differentially influenced by 

seeding date. Moderately resistant cultivars had consistently low levels of FDK, while cultivars with 

intermediate resistance had marginally higher FDK that decreased significantly with later seeding dates. 

Moderately susceptible cultivars had higher FDK levels overall that increased with later seeding dates. 

Level of FDK was similar among resistance rating groups at early seeding dates.  

  

  
Figure 6. The effect of fungicide product on the level of Fusarium damaged kernels (left) and showing the 
interaction with post-anthesis average relative humidity (right). Error bars indicate standard error. The seven 
fungicide products were combined into 3 groups which differed significantly from each other in their effect on 
development of FDK in the crop. The range of relative humidity shown represents the first to third quartiles.  
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Figure 7. The effect of varietal FHB resistance rating on the level of Fusarium damaged kernels (left) and showing 
the interaction with seeding date (right). Error bars indicate the standard error. The three resistance rating groups 
differed significantly from each other in their effect on FDK development in the crop. The range of seeding dates 
shown represents the first to third quartiles. 

 

Discussion 

The multivariate and observational design of this study fundamentally leads to a more explorative, as 

opposed to confirmatory, analytical approach with the objective of identifying associations worthy of 

further investigation. The competing models analysis allowed us to look at the relative influence of 

management variables and environmental variables simultaneously, and whether the effects were 

additive or interactive. The method followed was most appropriate considering the low level of 

replication in relation to the large number of explanatory variables as well as the high level of 

intercorrelation among explanatory variables. The inclusion of random effects with mixed effects 

modeling also helped to address these issues to a certain degree. Importantly, the direction of the effect 

(positive or negative) as identified with single variable models was fairly consistent with what would be 

expected based on previous research and experience, which helps to validate the study design and 

demonstrate the potential for extension of this study or future studies with similar methodology. 

In this study, the three response variables (Fusarium Head Blight (FHB) index, Fusarium damaged kernels 

(FDK), and level of deoxynivalenol (DON)) were not associated with the same explanatory variables. This 

is consistent with previous research that has shown that correlations between these variables are 

dependent on environmental conditions. Goral et al. (2019) found there was no significant correlation 

between FDK and DON overall, but the two were significantly correlated when environments were 

analyzed separately. Variability in environmental conditions was desirable in this study as these variables 

were of interest and were not controlled for. Random effects were specified such that there would be 

some differentiation of environments by year, location, producer, field, and sometimes sample site, but 

these groupings were mainly included to account for unbalanced data within these groups. Thus, we 

would not expect the response variables to be correlated in this study. Furthermore, Del Ponte et al. 

(2007) found that DON accumulation was not correlated with FHB index or FDK when infection occurred 

in the late stages of wheat development, which would suggest that the variables would be responding to 

different environmental triggers that would vary with the timing of infection. The differential influence 
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of timing of infection on the three response variables was accounted for by averaging or totalling the 

variables over several pre- and post-anthesis intervals. Ultimately, more could have been deduced 

regarding the relationship between FHB index, FDK, and DON if the same multivariate analysis was 

conducted for all three variables with the same data set. In consideration of the greater level of 

subjectivity in assessing FHB index and the very low values of DON observed in this study, more 

replication would be necessary to conduct the multivariate analysis with these two variables.  

For management variables, it is encouraging that the most often and highly recommended practices 

were shown to have the greatest influence on Fusarium infection in this study. Cultivar/variety was the 

most influential management variable on FDK, and FHB resistance rating was also highly influential. 

Previous research has frequently shown that the use of FHB resistant varieties is a key factor for 

management of FHB, especially as part of an integrated management strategy (Fernando et al. 2021, Ye 

et al. 2017, Wegulo et al. 2011). Fungicide product, mode of action group, and active ingredient were 

top-ranked variables affecting FDK, however timing of application was not a significantly ranked variable. 

Timing of application is usually emphasized as a greater priority than fungicide product for FHB 

management in wheat. In the single variable models, there was a significant negative relationship 

between fungicide timing and FDK, indicating that the level of FDK decreased as the fungicide application 

date approached anthesis, as a large majority of fungicide applications were done at the recommended 

stage, prior to anthesis. Fungicide application timing also had a marginally significant effect on the FHB 

index, but no effect on DON accumulation. Crop rotation is also often recommended as key factor for 

integrated management of FHB, however it was not a top-ranked variable. In the single variables models, 

only one of the crop rotation variables had a significant relationship with FDK; FDK significantly increased 

with the number of cereal crops in a 4 year rotation. Soil texture was a top-ranked agronomic factor 

affecting FDK, and could influence residue turnover rate, however the amount of residue, pre- or post-

seeding, was not a highly ranked variable, and did not have a significant association with FDK. The effect 

of soil texture was more likely related to its role in regulating the microclimate within the crop.  

Top-ranked environmental variables affecting the development of FDK in the crop during pre-anthesis 

stages were mainly related to temperature, while top-ranked variables during post-anthesis stages were 

related to moisture. This is consistent with what is known about conditions required for spore 

production prior to anthesis (Paul et al. 2007, Gilbert et al. 2008), and infection and accumulation of 

mycotoxins after anthesis (Kriss et al. 2010, Cowger et al. 2009). More importantly, it was deduced that 

the effects of environmental variables were not additive, but largely only interactive with management. 

Predictive models for forecasting FHB risk have focused on the effect of environmental conditions on 

FHB development in the absence of FHB management. FHB risk management practices are commonly 

applied in commercial wheat crops, thus, these findings confirm that in order to advance our ability to 

forecast the risk of FHB infection, it will be necessary to more thoroughly evaluate the interactive effects 

of management and environment. Based on the results of this study, it would be most insightful to 

compare genetic resistance to FHB or effectiveness of different fungicide strategies (products and 

timing) as a function of variable environmental conditions.  

The analysis shown in this report is fairly explorative but illustrates the potential that could be achieved 

with this type of observational study, utilizing on-farm data collection. With greater replication and 

expansion of this data set, it would be statistically conceivable to explore relationships among several 

management and environmental variables simultaneously, and to utilize more confirmatory multivariate 

analytical approaches such as structural equation modeling. Additional replication would also justify the 



inclusion of variables with missing values in the multivariate analysis; at this point, including those 

variables would result in an unacceptable level of data loss. Overall, an extension of the study to provide 

additional replication, with a focus on particular variables of interest, would be beneficial.  

A secondary objective that was achieved during this study was the development of relationships 

between research organizations and producers to facilitate future research collaborations and to help 

applied research organizations transition to more field-scale agronomic trials. The present study has also 

demonstrated the usefulness of new and different study designs that have been more common in 

ecological research, where experimental manipulations can be challenging. Observational studies 

eliminate the requirement for producers to implement and maintain field trials which are time-

consuming and logistically demanding.  

 

CONCLUSIONS AND RECOMMENDATIONS        

The management practices most often recommended for FHB risk management in commercial fields 

include the use of resistant varieties and a timely fungicide application. Results of this study suggest that 

the choice of variety and fungicide product are highly influential on FHB development, but that the 

timeliness of fungicide application was less important. Environmental conditions have been shown to be 

highly influential on the development of FHB, FDK, and DON, and the use of forecasting tools for 

predicting FHB development in a crop is also highly recommended. Results indicate that environmental 

variables affecting the development of FDK in the crop during pre-anthesis stages were mainly related to 

temperature, while influential variables during post-anthesis stages were related to moisture. However, 

results of this study have also shown that environmental variables are mainly interactive with FHB risk 

management practices, and the effects are not additive. Yet, the effects of environmental variables are 

usually isolated from the effects of management in the development of predictive models. As FHB risk 

management practices are commonly applied in commercial wheat fields, these findings confirm that in 

order to advance our ability to forecast the risk of FHB infection, it will be necessary to more thoroughly 

evaluate the interactive effects of management and environment. Based on the results of this study, it 

would be most insightful to compare genetic FHB resistance or effectiveness of different fungicide 

strategies (products and timing) as a function of various environmental conditions.  
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EXTENSION AND ADMINISTRATION         

Extension 

Results have not been presented to the public at this time but will be communicated via oral 

presentations, and online and printed reference material and publications in the near future. Media 

representatives have been in contact and will be involved in sharing the results of the study with the 

public. 
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