Western Applied Research Corporation

Tristan Coelho – Research Assistant Anne Kirk – Research Manager

WARC

(2

WARC

Real WARC's Mandate

- Identify and evaluate research and technology for Saskatchewan producers
- Transfer technology from research to Saskatchewan producers

WARC's Recent Activities

∝ Scott Field Day – August 1st, 2012

Research and demonstration projects including saline tolerant forages, herbicide resistance in wild oat and canola seeding seeds trial

Crop Production Show – January 7-10, 2013

- Coordinate with the 7 other Agri-ARM sites
- **Crop Production Week** January 11th, 2013

🕼 Agri-ARM Research Update

2012 Research Activities

ADOPT

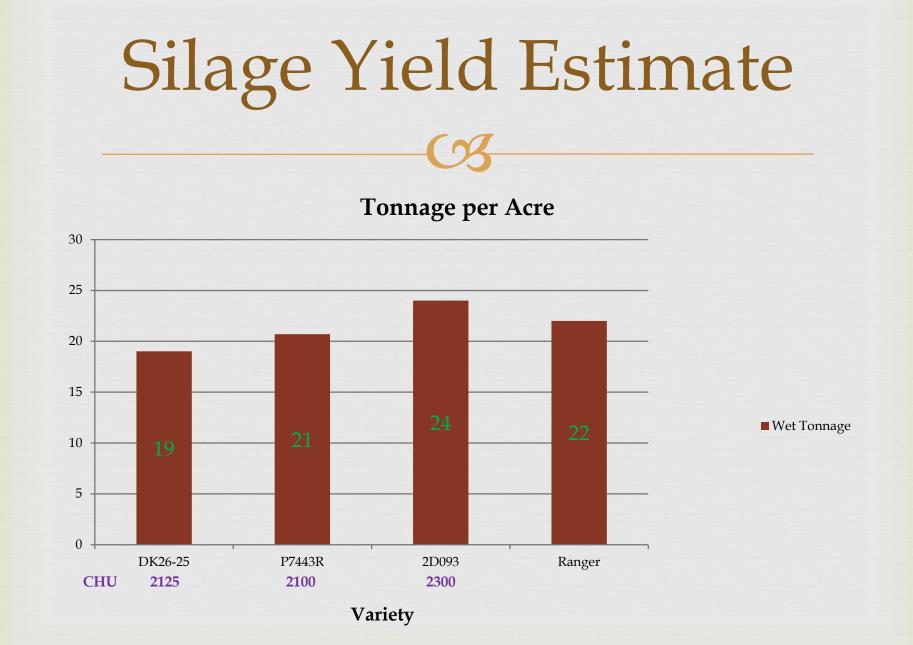
- Managing herbicide resistance in wild oat
- Managing herbicide resistance in kochia
- ☞ Fall 2,4-D preceding canola, lentil and pea
- Canola seeding speeds demo
- Reproper preharvest glyphosate in wheat
- Rates of ESN and Agrotain treated urea for wheat
- Response to cereal fungicide applications in spring wheat
- Reliar fungicides on wheat and barley
- Rertilizer seed dressing effects on spring wheat
- Real Nitrogen fertilizer management options for winter wheat
- 🛯 Inoculant product ad formulation effect on field pea
- Reclamation of saline soil using perennial forages
- ∧ Res on canaryseed
- Chloride fertilizer on canaryseed
- ন্থ Intercropping


Industry or other

- Toadflax timing
- Canola low plant populations
- Canola variety shatter tolerance
- Winter wheat production practices
- Pulse desiccant trial
- Corn grazing study
- Mustard demonstration

Contracted from AAFC

- Evaluating varieties for straight cutting
- Nitrogen management in canola and malt barley
- Predicting Nitrogen dynamics in Canadian cropping systems


2012 Weather at Scott

Revaluate 3 corn varieties and on barley for quality and yield

- Monsanto DKC26-25
- Pioneer P7443R
- 3 Hyland 2D093
- 🕼 Ranger Barley
- - 𝕨 30,000 seeds per acre
- - 2 bushels per acre

Pea Input Study

- Q 22 treatments starting with an empty and a full package, removing or adding specific agronomic inputs
- Empty Package low seeding rate, no seed treatment, liquid inoculant, no started fertilizer, no fungicide
- Full Package high seeding rate, seed treatment, granular inoculant, starter fertilizer, two fungicide applications
- R Conducted at four locations:
 - Scott, Indian Head, Melfort and Swift Current

Previous Research

- Seeding Rate optimum seeding rate for maximum yield in SK was 108 plants/m2, economic seeding rate in weed-free conditions (50-75 seeds/m2)

- Revelopment

Empty vs Full

Yield – Indian Head

Comparing Individual Inputs

	Yield Increase (decrease) in kg/ha									
	Scott		Indian	Head	Mel	fort	Swift Cu	irrent	All S	ites
Seed treatment		(-34)		(-92)		68		(-117)		42
Seeding rate		1268		4		598		506		604
Granular inoculant		902		73		357		33		364
Starter fertilizer		573		52		191		-70		195
Fungicide		392		845		1134		-8		1004

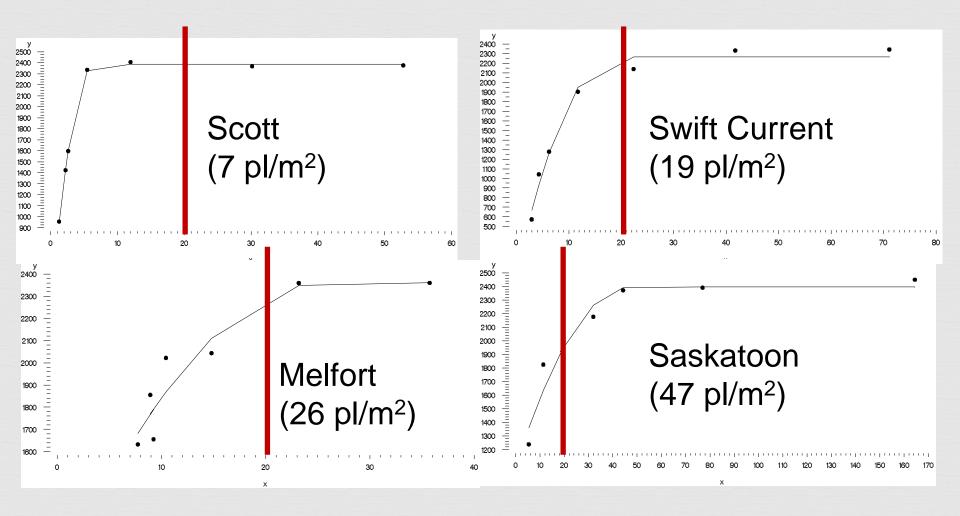
Evaluating the Response of Hybrid Canola to Low Plant Populations

- ᢙ Objectives:
 - CS Determine the minimum plant density where hybrid canola yields 90% of the maximum
 - Evaluate the effects of plant population on maturity, seed size and green seed
 - Obtaining the minimum plant density at which reseeding would be recommended
- Seeding Rates 5, 10, 20, 40, 80, 150 and 300 seeds/m2
 - Typical seeding rate of 5lbs/ac, using seed with a TKW of 5 grams, estimating 60% survival would give us an actual seeding rate of 70 plants/m2

$20 \text{ seeds}/m^2$

 $40 \text{ seeds}/\text{m}^2$

 $80 \text{ seeds}/m^2$


 $150 \text{ seeds}/\text{m}^2$

Actual Plant Densities – increased podding and branching delayed harvest $1 \text{ plant}/\text{m}^2$ $52 \text{ plants}/\text{m}^2$

Yield Response to Plant Density in 2011

Optimal Seeding Rate For Spring Wheat

- Objective provide information on the yield benefits associated with increasing seeding rate in spring wheat
- ← Unity VB was seeded at rates ranging from 60 to 480 seeds square meter

- Weed biomass without herbicides ranged from 188% at the lowest seeding rate to 23% at the highest seeding rate

• Objective - demonstrate the effects of commercially available seed-applied micronutrient fertilizer products and granular Zinc on spring wheat emergence, early development and yield

Table 2. Description of treatments in seed applied fertilizer demonstration.

Trt	Trade Name ^z	Description / Rate / Nutrient Analyses ^Y
1	Untreated check	N/A
2	EZ20 Essential Zn®	$ZnSO_4$ (2-0-0-14 + 20% Zn) applied in-furrow at 12 kg/ha
3	Awaken ST®	Seed-applied at 325 mL 100 kg seed ⁻¹ ; 6-0-1-0 + 5% Zn + 0.8% B, Cu, Fe, Mn & Mo
4	Alpine Seed Nutrition®	Seed applied at 510 ml 100 kg seed ⁻¹ ; 6-22-2-0 + Zn
5	Protinus®	Seed applied at 323 g 100 kg seed ⁻¹ ; 40% Zn, 10% Mn + Fe
6	Undisclosed - Zn ^X	Seed-applied; commercial Zn-based product
7	Undisclosed - Cu	Seed-applied; commercial Cu-based product

Data Collection

Emergence counts – plant counts at 5 dates
 Subtle treatment effects on emergence were observed at Melfort
 Biomass sampling – 3 weeks after first emergence
 Vigor rating – 1-10 scale of plant vigor
 Growth stage – Haun scale
 Yield and Quality – test weight, seed size and protein
 Slight yield increase at Indian Head with the application of granular ZnSO4 fertilizer

Reclamation of Saline Soil with Perennial Forages

(M

	Salinity Gradient				
Treatment	Non-Saline	Slightly	Moderately		
		Saline	Saline		
Alfalfa – rambler	100	39	15		
Alfalfa – halo	100	55	4		
Alfalfa – rugged	100	39	19		
Tall fescue – kokanee	100	78	32		
Tall wheatgrass	100	101	101		
Creeping foxtail	100	95	106		
Saline Master	100	102	76		
Green wheatgrass – AC	100	95	106		
Saltlander					
NewHy	100	109	70		

High Salinity

Forage production in moderately saline soil

1 NewHy 2 Smooth Brome 3 Tall Wheatgrass 4 Creeping Foxtail 5 Tall Fescue 6 Tall Wheatgrass
7 AC Saltlander Green Wheatgrass
8 Halo Alfalfa
9 Tall Wheatgrass

Pre-Harvest Glyphosate

Conducted at Scott, Swift Current and Prince Albert in 2012
 Unity spring wheat - midge tolerant varietal blend

- Demonstrate to producers the proper pre-harvest glyphosate timing in wheat
- Illustrate methods of avoiding issues of improper applications

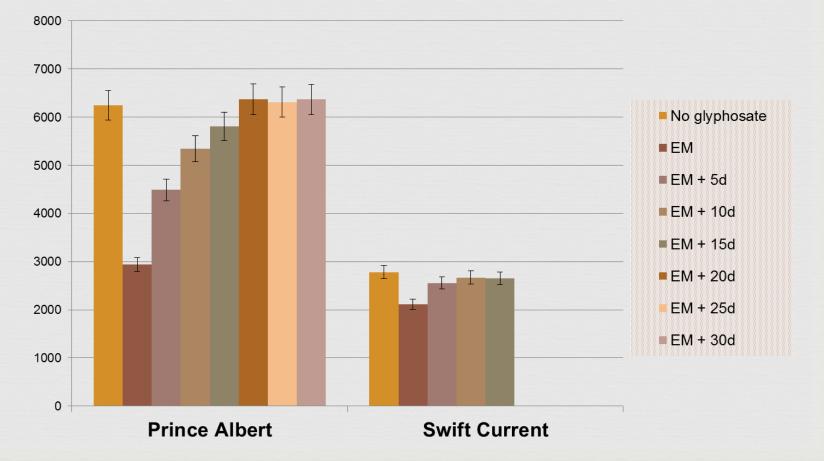
 - Reduction of grain yield and quality

Proper Glyphosate Timing

Apply at 30% grain moisture or less
 Cereal grain reaches physiological maturity at the hard dough stage
 Maximizes yield and quality potential
 Pre-harvest glyphosate can also reduce the risk of frost damage and post-harvest sprouting

Glyphosate Treatments

R Treatment List and Application Dates


Trt	Timing	Scott	Swift Current	Prince Albert
1	Check (no glyphosate)	n/a	n/a	n/a
2	Early milk	Aug 7	Aug 1	Aug 7
3	Early milk + 5 days	Aug 12	Aug 7	Aug 12
4	Early milk + 10 days	Aug 17	Aug 10	Aug 17
5	Early milk + 15 days	Aug 23	Aug 14	Aug 22
6	Early milk + 20 days	Aug 27	N/A	Aug 27
7	Early milk + 25 days	Sep 1	N/A	Sep 3
8	Early milk + 30 days	Sep 6	N/A	Sep 8

Scott Results

Table 2: Treatment effects on wheat yield, test weight (TW),thousand kernel weight (TKW) and protein

	Yield	Test Weight	Thousand Kernel	Protein
Treatment	(kg/ha)	(g)	Weight (g)	%
No glyphosate	-	-	-	-
Early milk	1331c ^y	61.9c	16.13c	14.7a
Early milk + 5 days	2542b	70.5b	18.94b	13.9b
Early milk + 10 days	3530a	76.3a	21.83a	14.1b
CV	14.54	1.65	4.62	1.49
LSD	620.81	1.99	1.52	0.37

Prince Albert and Swift Current Results

Conclusions

- Assists in **plant dry-down** to facilitate an earlier harvest
- May be difficult to justify as a harvest aid in a weed-free crop

New for 2013

- Refrect of seeding rate and seed size on lentil
- CR Demonstrating the effect of fungicide application and seeding rate on disease levels in field peas and lentils
- Reall 2,4-D preceding canola, lentil and pea

- R Nitrogen fertilizer management options for winter wheat
- R Short season corn and soybean demonstration

For more information visit: www.warc.ca

ADOPT (Agricultural Demonstration of Practices and Technologies) program

Saskatchewan Ministry of Agriculture

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada